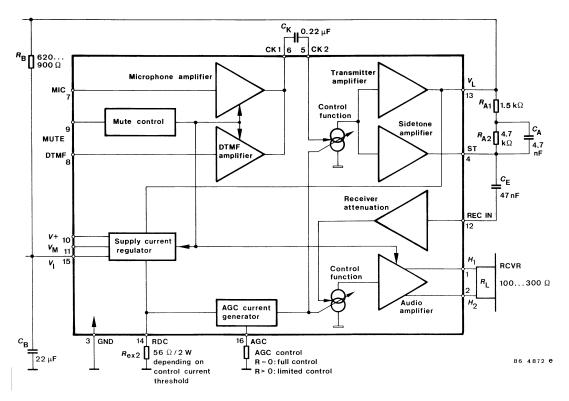
TEMIC

Low-Voltage Electronic Speech Circuit with Dialer Interface

Description

The electronic speech circuit, U4056B1, is a linear integrated circuit for use in telephones and other line fed terminal equipment. It replaces the common speech circuit with carbon microphone, hybrid transformer,

sidetone equivalent and ear protection rectifiers. A low-cost electrodynamic transducer is used as an earphone. It contains all components necessary for amplification of signals and adaption to the line.


Features

- The microphone hybrid transformer is replaced by an electronic circuit
- Asymmetrical input for electret microphone
- High performance through the use of dynamic transducers as the earphone (non-linear distortion $\leq 2\%$)
- Optional automatic equalization of sending and receiving reference equivalent up to 5 km subscriber line length
- DTMF interface with muting
- Supply voltage for dialer

- High range of line feeding current
- Input resistance independent of line current and sidetone suppression circuit
- Built-in ear protection by earphone voltage limiter
- High life expectancy due to reduced power consumption on the chip

Benefits

• Operation possible from 5 mA

U4056B1: High level mute

Rev. A1: 07.08.1995

Figure 1 Block diagram and pin connection

Pin Description

Pin	Symbol	Function	
1, 2	H1 and H2	The push-pull complementary outputs of the receive amplifier: Dynamic transducers with a minimum impedance of 100Ω can be directly driven by these outputs.	
3	GND	Ground	
4	Sidetone ST	The output of the sidetone cancellation signal, requires a balanced impedance of eight to ten times the subscriber's line impedance to be connected to Pin 13.	
5	CK2	Input to the line output driver amplifier. Transmit a.g.c. is applied to this stage.	
6	CK1	The transmit pre-amp output respective of the DTMF output which is normally capacitively coupled to Pin 5.	
7	MIC IN	This input is intended to be capacitively coupled to a FET-buffered electret microphone	
8	DTMF IN	The DTMF input has an internal resistor connected to ground. It provides the load resistor for the emitter of a CMOS DTMF generator. This input is only active when MUTE (Pin 9) is pulled high.	
9	MUTE	The MUTE input must be pulled at least to 1.5 V (MUTE) to mute the MIC amp. and audio amp. and enable DTMF IN.	
10	V+	Regulated output voltage of 2.7 V for biasing a DTMF generator activated by MUTE	

Pin	Symbol	Function	
11	V_{M}	Regulated output voltage of 1.2 V suitable for low-voltage electret microphone	
12	REC IN	The receive amplifier input. The receiving amplification is regulated by an a.g.c.	
13	$V_{\rm L}$	Positive supply voltage input to the device. This input should be connected to the positive output of the polarity guard. The current through this pin is modulated by the transmit signal.	
14	R _{DC}	An external resistor (2 W) is required from this pin to GND to control the dc input impedance of the circuit. It has a nominal value of 56 Ω for low-voltage operation. Values up to 100 Ω may be used to increase the available transmit output voltage swing at the expense of low-voltage operation.	
15	V _I	This internal voltage bias line must be connected to V_L via an external resistor R_B , which dominates the ac input impedance of the circuit and should be $620~\Omega$ for an $600~\Omega$ input impedance or $910~\Omega$ for a $900~\Omega$ input impedance.	
16	R _{AGC}	The range of transmit and receive gain variations between short and long loops may be adjusted by connecting a resistor, R _{EX1} , from this pin to Pin 3 (GND). This pin can be left open to set a.g.c. out of action.	

Pin Description

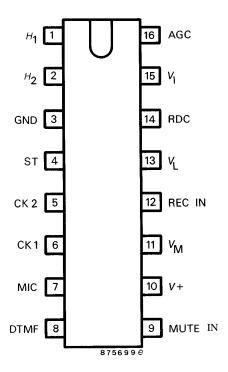


Figure 2

Absolute Maximum Ratings

Reference point Pin 3, unless otherwise specified

Parameters	Symbol	Value	Unit
Line current	$I_{ m L}$	200	mA
DC line voltage, $t_p = 3$ ms, Pin 13	$V_{\rm L}$	20	V
Power dissipation, $I_L = 100 \text{ mA}$	P _{tot}	560	mW
Junction temperature	Tj	150	°C
Ambient temperature range	T _{amb}	-28 to +80	°C
Storage temperature range	T _{stg}	-55 to $+150$	°C

Thermal Resistance

	Parameters	Symbol	Value	Unit
- 1	Junction ambient	R _{thJA}	85	K/W

Electrical Characteristics

Reference point Pin 3, cable equivalent = l = 1 km, \varnothing 0.5 mm, R' = 184 Ω , C' = 37 nF, f = 1300 Hz, 0 dB_m = 775 mV_{rms}, R_{EX2} = 56 Ω / 2 W, T_{exch} = 48 V, R_{EX2} = 500 Ω , T_{amb} = 25°C, unless otherwise specified.

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Line voltage		-	1.3			Oilit
Line voltage	$I_{L} = 5 \text{ mA}$ $I_{L} = 20 \text{ mA}$	$V_{\rm L}$	2.7	1.7 3.0	2.1 3.3	V
	$I_L = 20 \text{ mA}$ $I_L = 30 \text{ mA}$		3.6	4.0	4.5	v
	$I_L = 30 \text{ mA}$ $I_L = 73 \text{ mA}$		7.5	8.5	9.5	
	see figure 3		1.5	0.5	7.5	
Transmit and sidestone	see figure 4 and	6			<u> </u>	
Input resistance	Pin 7 – 3		23	28	33	kΩ
Gain	$I_L = 30 \text{ mA}$	G_{s}	32	34	36	dB
Guin	$30 \leq I_L \leq 73 \text{ mA}$	$\Delta G_{\rm s}$	_6	3.	30	u.b
Noise at line weighted psophometrically	$I_L = 73 \text{ mA}$	n _o		-72		dBmp
Sidetone reduction	$0 \le 1 \le 5 \text{ km}$	G _{STR}	10	15	20	dB
DTMF Amplifier						
Input resistance	Pin $8 - 3$	R_{D}	8	10	13	kΩ
DTMF Gain	$I_L = 30 \text{ mA}$	G_{D}	8	10	12	dB
	$31 \text{ mA} \leq I_{L} \leq 73 \text{ mA}$	$\Delta G_{ m D}$		-6	-9	dB
Volume range d ≥ 5%	$I_L = 30 \text{ mA}$	V_0	0.9	1		V _{RMS}
Receiving amplifier	see figure 5					
Input resistance	Pin 12 – 3	Ri	40	50	60	kΩ
Receiving amplifier gain	$R_{HH} = 300 \Omega, I_L = 30 \text{ mA}$	G _R	-1	-3	-5	
	$R_{HH} = 300 \Omega$ $30 \le I_L \le 73 \text{ mA}$	ΔG_R		-6		dB
Receiving noise at	$I_L = 73 \text{ mA}, R_{HH} = 300 \Omega$	n _i		-80		dBmp
earphone weighted psophometrically						
Gain change when muted	$I_L \ge 30 \text{ mA}, R_{HH} = 300 \Omega$	G _{RM}	15	20	26	dB
Output saturation	$I_L \ge 20 \text{ mA}$	V_0	1	1.5		V _{pp}
threshold	$R_{HH} = 300 \Omega$					PP
MUTE input		•		•	'	•
MUTE-input current	Pin 9 = 1.5 V	I _M	10	20	30	μΑ
MUTE off input voltage		V _{M off}			0.3	V
MUTE on input voltage		V _{M on}	1.5			V
Supply voltage see figure 3					•	
Output voltage	$I_L \ge 20 \text{ mA MUTE}$ switched off	V+	3		6.1	
	switched on		2.5	2.9	3.1	V
	Pin 10					
Output current	$I_L \ge 20 \text{ mA MUTE}$	I+		30		
	switched off		1.0	1.0		
	switched on		1.0	1.2		mA
0 1	V + = 2.5 V Pin 10	***	1.1	1.2	1.1	**
Output voltage	$I_L \ge 20 \text{ mA}$ Pin 11	V _M	1.1	1.2	1.4	V
Output current	$I_L \ge 20 \text{ mA}$ Pin 11	$I_{\mathbf{M}}$	300	400	600	μA

TEMIC

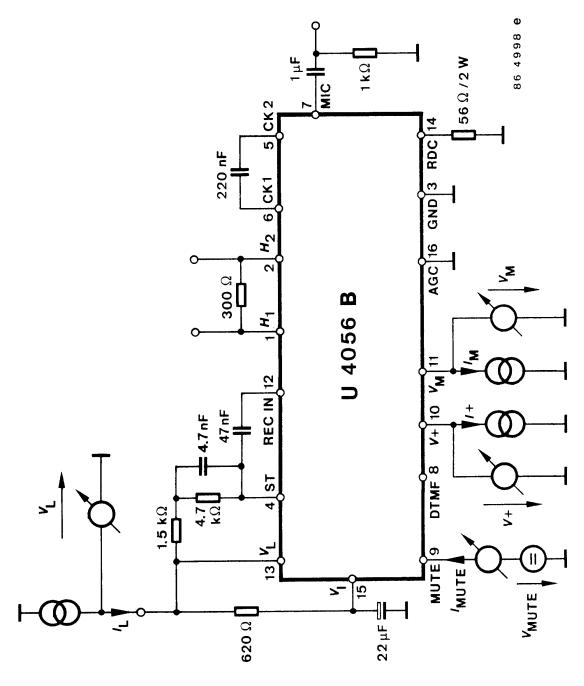


Figure 3 Line and supply voltage characteristics

Figure 4 Transmitting amplification and sidetone reduction

TEMIC

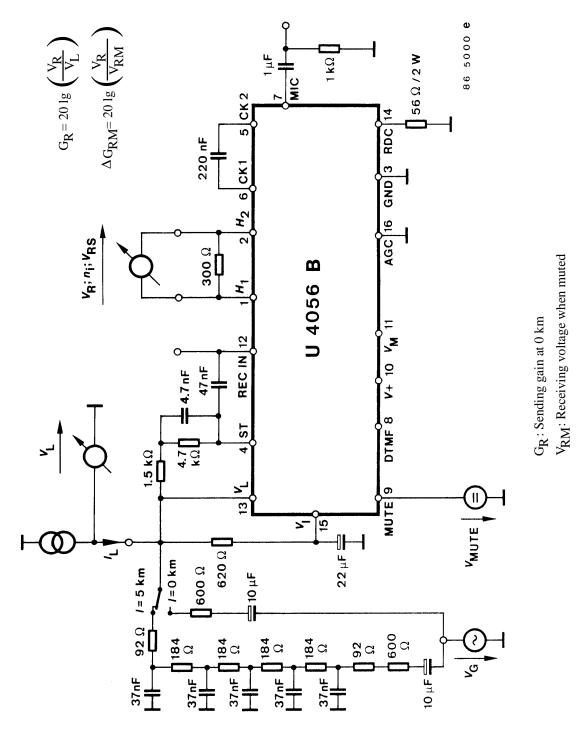


Figure 5 Receiving amplifier

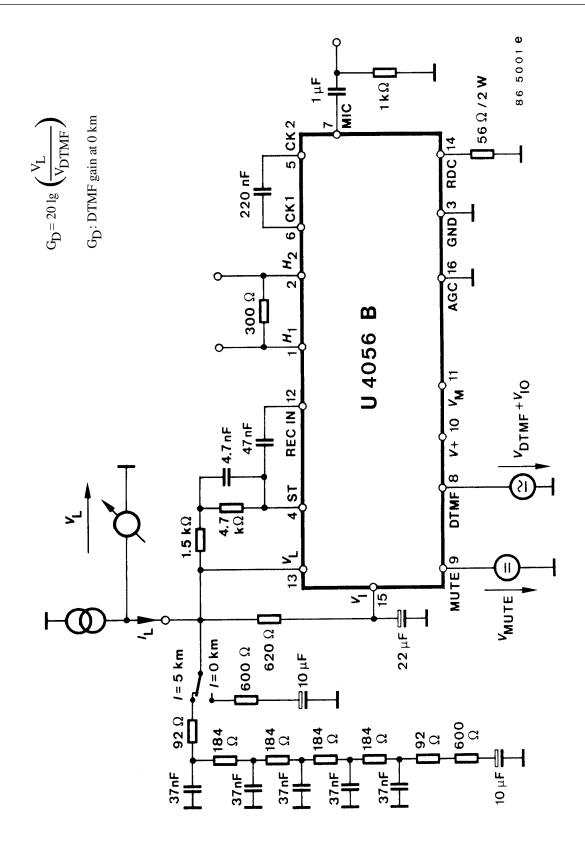
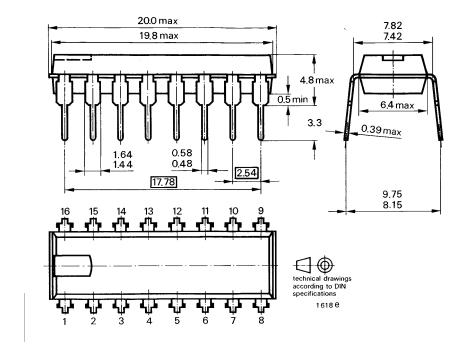


Figure 6 DTMF amplifier


TELEFUNKEN Semiconductors

Ordering Information

Extended Type Number	Package	Remarks
U4056B1	DIP 16	

Dimensions in mm

Package: DIP 16

TELEFUNKEN Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423